Enhanced Vapor Recovery Amendments Workshop

June 18, 2002
Air Resources Board
California Environmental
Protection Agency

Agenda

- Introductions
- EVR Tech Review and EVR Amendments
- Discussion of Comments Received
- Proposed EVR Amendments
- In-Station Diagnostics
- Cost-Effective Analysis Update
- Schedule

Tech Review Direction from March 2000 Resolution

- Feasibility of standards with future effective or operative dates
- Comprehensive, thorough and rigorous
- Evaluate practical alternatives
- Hold workshops
- Complete tech review by April 1, 2002
- Submit final report to Board for consideration at a public meeting

EVR Amendments

- Propose changes to EVR regulation based on tech review findings
- Improve certification process for Phase II and ISD combinations
- Define "rigid" vapor piping
- Revised and new test procedures
- General clean-up and clarification

Comments Received Tech Review Other EVR

- EVR alternatives
- Phase II standards
- Nozzle standards
- ISD
- Cost Analysis

- EVR implementation schedule
- Certification process
- Sole source
- In-use VR systems
- ISD Enforceability

EVR Implementation Schedule

Concerns:

- One certified Phase I system
- No certified Phase II systems
- No certified ISD systems

Response

 will not lower bar just to certify multiple systems

Phase I EVR Status

- 17 system applications
- 14 test sites sealed
- 9 systems failed
- 3 systems currently on test
- 1 system withdrawn
- 1 system certified

Phase II EVR Status

- 2 system applications
- 0 test sites sealed
- 0 systems currently on test

The Enhanced Vapor Recovery Timeline

Phase II and ORVR

Comment:

 Extend ORVR compliance date to April 2007 to align with Phase II

Response:

 Excess emissions of 3.4 tons/day in 2005 would not be controlled. No delay in ORVR requirements.

EVR for Attainment Areas

Comment:

 Request delayed implementation for districts in attainment areas

Response:

 EVR needed to minimize benzene exposure

Certification Process: Encourage R&D

Comment:

 Expedite/simplify application process for research projects

Response:

 Have approved 12 R&D sites over 18 months, usually within weeks of request

Certification Process: Provide Funding

Comment:

 Provide grants for development where industry options are limited

Response:

 ARB Innovative Clean Air Technology (ICAT) grants are available

Certification Process: Test Stations

Comment:

 Require a minimum of 300,000 or 400,000 gal/month

Response:

- Hard to get test sites now at 150,000 gal/month. No change.
- Evaluate performance for higher throughputs

Certification Process: Test Stations

Comment:

 Expand or eliminate 100-mile radius from Sacramento

Response:

 Need sites close to Sacto certification staff. Will consider exceptions for good cause.

Certification Process: Nozzles

Comment:

 Certify nozzles separately to meet spillage and drip standards

Response:

 Nozzles are system-specific component and cannot be separated from Phase II system

Certification Process: Processors

Comment:

Certify processors by system type

Response:

We are considering this change

Sole Source for EVR Systems

Comment:

One option leads to higher cost and inadequate supply

Response:

 Additional systems should be available before EVR deadlines for existing stations. Unfair to penalize system that meets requirements.

In-use VR Systems

Comment:

 Address deficiencies in balance systems.
 Develop test procedures for in-use components

Response:

 EVR balance systems will address deficiencies. Suggest districts take lead in developing inspection test methods.

Tech Review Comments

- EVR alternatives
- Phase II standards
- Nozzle standards

- ISD
- Cost Analysis

- EVR implementation schedule
- Certification process
- Sole source
- In-use VR systems
- ISD Enforceability

EVR Alternatives

Comment:

 Report does not provide thorough and rigorous review of alternatives

Response:

 Staff evaluated all alternatives identified by stakeholders. No alternatives sought for standards characterized as feasible

Phase II standards

- Maximum A/L ratio
- Pressure-related fugitives
- Balance component pressure drops
- Nozzle/dispenser compatibility
- Processors

Maximum A/L ratio

Comment:

 Max A/L should be based on system specific failure mode risk.

Response:

 Allowable A/L ranges established during certification. Max A/L limits ensure excess emissions do not exceed EVR system limits in the event of system failure.

Pressure-related fugitives

Comments:

- Standardize to allowable leak rate.
- Don't combine allowable leak with actual operating test pressures

Response:

 Considering introducing a controlled largest allowable leak during a portion of the operational test

Balance component pressure drops

Comment:

 Include allowance for ISD flow sensor by increasing total allowable pressure drop

Response:

- No increase in total pressure drop
- Use balance components that meet lower than max for systems with ISD flow sensors

Nozzle/dispenser Compatibility

Comment:

 How will compatibility be determined for grandfathered six-pack dispensers?

Response:

 Will provide guidance on compatible EVR nozzles for existing dispensers

Processors

Comment:

 Not true that complete redesign of processor systems necessary to meet EVR

Response:

 Will modify report to reflect manufacturer claim that existing system meets max A/L and processor flowrate limits

Nozzle standards: Post-Fueling Drips

Comment:

- Manufacturer claims can meet 3 drop average Response:
- Propose 3 drop average over total station (10 runs/nozzle) with maximum of 10 drops for any one fueling. Verify 3 drops feasibility by Sept. 2002

Agenda

- Introductions
- EVR Tech Review and EVR Amendments
- Discussion of Comments Received
- Proposed EVR Amendments
- In-Station Diagnostics
- Cost-Effective Analysis Update
- Schedule

Proposed EVR Amendments

- "Dripless" nozzle standard
- CP-201 revisions
- Test procedure changes
- Certification of ISD by system type
- ISD-based maintenance during certification testing

"Dripless" nozzle standard

- Currently "1 drop per refueling"
- Only EVR standard determined not to be feasible in tech review
- 3 drop average with 10 drop max is proposed

CP-201 revisions

- Processor HC rate
- Efficiency for ORVR fuelings
- Vapor piping definitions
- Hand pump specifications
- Certification process changes

Processor HC rate

Propose:

"maximum hydrocarbon feedrate from to the processor shall not exceed 5.7 lbs/1000 gallons"

Efficiency for ORVR fuelings

- Efficiency calculation not valid for ORVR fueling
- Modify CP-201 to calculate efficiency for non-ORVR vehicles only

Vapor piping definitions

- Need definition for "rigid" pipe
- Options
 - minimum bend radius
 - -bulk modulus
 - pipe deflection test procedure

Hand pump specifications

- Evaluate hand pumps to be used in place of spill container drain valves
- Certify that hand-pumps are durable and remove liquid as well as drain valve

Dispenser standard

- Dispenser vapor piping for balance systems already designated as a non-system specific component
- Propose to remove "balance" to allow all dispenser vapor piping to be non-system specific

Daily high pressure

- Clarify calculation in CP-201
- Intent:
 - Calculate the average pressure reading for each hour.
 - Identify the highest one-hour pressure average over a 24 hour period. This is the daily high pressure.
 - Compute rolling 30-day average of daily high pressures - may not exceed +1.5 inches water.

Certification process changes

- innovative system
- throughput for sixpack dispenser
- Phase I systems

- certify ISD by system type
- ISD-based maintenance

Innovative system

- Intent was to allow flexibility for systems which emit much less than allowed by current standards
- In practice viewed as way to avoid compliance with some EVR requirements
- Language to be modified to better reflect intent

Test site throughput for sixpack dispensers

 Unihose: Minimum throughput of 150,000 gal/month

 Six-pack: Minimum throughput of 150,000 gal/month for one grade of gasoline

Phase I systems

 Operational test of < 180 days for new Phase I systems composed entirely of previously certified Phase I components to be considered

Test procedure changes

TP-201.1	Phase I Efficiency			
TP-201.2B	Component Leakrates			
TP-201.2D	Post-Fueling Drips			
TP-201.2F	Pressure-related			
	Fugitives			

Proposed test procedures

TP-201.2?	Balance components			
	pressure drops			
TP-201.1?	Continuous pressure			
	monitoring			
TP-201.2?	ISD certification			
	-			

TP-201.1 Phase I Efficiency

- Current procedure assumes volume of vapor returned to cargo tank is same as volume of gallons dispensed
- Revised procedure measure vapor volume directly using meter to improve accuracy

TP-201.2B Component leakrates

- Current procedure for P/V valve leak measurement uses rotameters
- Revised procedure allows option for mass flow controller to improve accuracy

TP-201.2D Dripless nozzle

- Modifications suggested to improve method consistency
- 15 drops/ml to be changed to
 20 drops/ml to be consistent with spillage procedure

TP-201.2F Pressure-related fugitives

- Current procedure has missing equations
- Change time for pressure decay from 20 minutes to 5 minutes

Balance component pressure drop

- New procedure
- Bench test to determine pressure drop for balance components

Continuous pressure monitoring

- New procedure
- Describes equipment and procedure for pressure monitoring required for certification operational tests

ISD Performance

 Describes certification tests to determine compliance with ISD standards

Agenda

- Introductions
- EVR Tech Review and EVR Amendments
- Discussion of Comments Received
- Proposed EVR Amendments
- In-Station Diagnostics
- Cost-Effective Analysis Update
- Schedule

Certification Process: ISD

Comment:

Certify ISD by system type

Response:

 ISD system type certification will be proposed in the EVR amendments

ISD Enforceability

Comment:

 ISD A/L failures should be equivalent to Executive Order requirements

Response:

 ISD is a diagnostic tool to correct gross failures - it is not a Continuous Emission Monitor!

ISD Enforceability

Comment:

- Lack of corrective action is a violation
- Tamper-proof ISD systems
- Require shut-down for gross failures

Response:

Agree

ISD Compatibility

Comment:

 ISD systems must be compatible with existing UST tank monitors

Response:

 Use stand-alone ISD systems where there are compatibility issues. Costs are reflected in economic analysis.

Comment:

 A less elaborate ISD system could meet goals and cost less

Response:

 Less elaborate ISD systems reviewed did not achieve same emission reductions

Comment:

 ISD is a non-invasive, passive system.
 Only one certification is necessary for any type system

Response:

- ISD systems may not be completely independent of Phase II.
- Proposing certification by "system-type"

Comment:

 ORVR penetrations >80% may affect performance of ISD systems

Response:

 ISD systems will be evaluated at high ORVR penetration during certification testing

Comment:

ISD pressure integrity standard too vague

Response:

 Will remove reference to orifice and leave the 2X allowable leak requirement

Comment:

Request for ISD pilot study data

Response:

Data can be made available

Certification of ISD by system type

Three certification options considered:

- ISD certify once with one Phase II system
- ISD certify with every Phase II system
- ISD certify with each Phase II system type

Proposed ISD System Types

- Balance
- Balance with Processor
- Vacuum assist (dispenser-based)
- Vacuum assist (dispenser-based with processor)
- Central vacuum
- Central vacuum with processor

ISD-based maintenance during certification testing

- ISD benefit is immediate identification of system failures
- Recognize that ISD will make it harder for Phase II systems to pass operational test
- Provide limited repair of failures identified by ISD during certification

ISD-Maintenance Criteria

- No failure for 90 days
- ISD-detected failures identified in maintenance manual
- Maximum 5% of allowable downtime for to ISD-detected failures
- Manual field test failures are grounds for test termination

If ISD-Detected Failure Occurs

- System certification will require use of ISD system
- Executive Order is non-renewable thus complete certification tests would be required after 4 years

If No ISD-Detected Failures

- System may be certified for use both with and without ISD
- Certification may renewed after four years with no additional certification testing unless deficiencies are identified

Agenda

- Introductions
- EVR Tech Review and EVR Amendments
- Discussion of Comments Received
- Proposed EVR Amendments
- In-Station Diagnostics
- Cost-Effective Analysis Update
- Schedule

Cost Methodology

- Comments received
- Updates to cost analysis since tech review report
- Current cost-effectiveness

Cost Changes based on Comments

- ISD installation costs depend on station size
- ISD maintenance/calibration/repair costs vary by station size
- Include annual field test costs for balance systems

ISD installation costs

- EVR ISOR \$1280 per dispener
- Tech Review \$2560 per dispenser
- Update based on pilot site experience for retrofit installation:
 - -Base install for each site = \$300
 - Unit cost for each dispenser = \$200

GDF Model Stations

Group	GDF 1	GDF 2	GDF 3	GDF 4	GDF 5
Typical throughput gal/mo	13,233	37,500	75,000	150,000	300,000
Throughput range gal/mo	Up to 25,000	25,001– 50,000	50,001– 100,000	100,001– 200,000	200,001 and up
% throughput	0.6	5.3	34.3	47.1	12.7
% stations	4.7	14.1	45.7	31.3	4.2
Number of dispensers	1	1.5	3	4.5	6 72

12

ISD Installation Costs

	GDF 1	GDF 2	GDF 3	GDF 4	GDF 5
EVR	\$1,230	\$1,230	\$1,230	\$1,230	\$1,230
ISOR					
Tech	\$2,560	\$2,560	\$2,560	\$2,560	\$2,560
Review					
ISD	\$500	\$600	\$900	\$1,200	\$1,500
Pilot					

ISD maintenance/calibration/repair costs per facility

- EVR ISOR not included
- Tech Review \$1200/yr
- Update based on # components with vendor estimated costs:
 - A/L sensor = \$300
 - Pressure sensor = \$200
 - Datalogger = \$50
 - Contractor training/certification = \$20 74

ISD maintenance/calibration/repair costs per facility

	GDF 1	GDF 2	GDF 3	GDF 4	GDF 5
EVR	Not	Not	Not	Not	Not
ISOR	included	included	included	included	included
Tech	\$1,200	\$1,200	\$1,200	\$1,200	\$1,200
Review					
Veeder-	\$520	\$720	\$1,170	\$1,620	\$2,070
Root					

Include annual field test costs for balance systems

- Existing balance system Executive
 Orders require testing every 5 years
- EVR systems will require annual testing
- Need to add costs associated with balance system increased testing
- Will do after review of district requirements for balance systems

Other Cost Analysis Updates

- Corrected annual equipment cost for cost-effectiveness calculation
- Reduced projected number of certified EVR systems
- Increased "worst case" ISD system cost
- Revised ISD emission reductions

Corrected Costeffectiveness Factor

- Error in February 2000 cost analysis in spreading cost over 4-year period
- Increases equipment costs in summary table by a factor of 3.5
- Total annual equipment costs in GDF tables do not change

Reduced projected number of EVR systems

	EVR	Tech	Revised
	ISOR	Review	Projection
Phase I	14	14	7
Phase II	64	64	32
ISD	16	16	8

ISD "Worst Case" Equipment Cost Update

	tech rev	now
TLS-350ISD	\$4,500	\$3,995
Dispenser Interface	ψ4,300	\$670
Pressure sensor	\$750	\$595
Flow sensor	\$900	\$885
Inventory sensor	not incl	\$1,095

ISD Equipment Only Cost Comparison

	GDF1	GDF2	GDF3	GDF4	GDF5
Tech Rev	\$6,150	\$6,600	\$7,950	\$9,300	\$10,650
Update	\$8,883	\$9,625	\$10,656	\$11,980	\$13,308

Revised ISD emission reductions

- Revisions described in EVR
 Technology review report but were
 not applied in cost analysis
- ISD emission reductions increase from 6.6 to 8.5 tons/day of 2010 ROG

Feb 2000 EVR Costs 33 million annually

June 2002 EVR Costs 88 million annually

EVR Total Equipment and Installation Costs

Overall Cost-Effectiveness as of June 2002

 \$88,000,000/yr
 1 ton
 1 yr

 27 tons/day
 2000 lb
 365 days

\$4.46/lb

EVR Cost Effectiveness as of June 2002

Group	GDF 1	GDF 2	GDF 3	GDF 4	GDF 5
gal/mo	13,233	37,500	75,000	150,000	300,000
%	4.7	14.1	45.7	31.3	4.2
EVR em red (tpd)	0.17	1.43	9.27	12.71	3.43
C.E.* (\$/lb)	\$24.22 \$15.37	\$9.10	\$5.74	\$3.40	\$1.95

^{*}Overall Cost-Effectiveness = \$4.46/lb

EVR Cost Effectiveness Development (\$/lb)

	GDF 1	GDF 2	GDF 3	GDF 4	GDF 5
ISOR Feb 2000	\$12.49	\$4.42	\$2.41	\$1.24	\$0.63
Tech Rev Apr 2002	\$15.25 \$10.11	\$5.46	\$3.04	\$1.61	\$0.81
Workshop Jun 2002	\$24.22 \$15.37	\$9.10	\$5.74	\$3.40	\$1.95
Bd Mtg Sept 2002	??	??	??	??	??

Cost Effectiveness of Major Regulations Mobile Sources and Fuel

Schedule for EVR Regulation Amendments

- Comments by July 5, 2002
- Notice and ISOR release on August 9, 2002
 (start of 45-day comment period)
- September 26, 2002 Board meeting

EVR Contacts

- EVR Amendments Cindy Castronovo
 - -ccastron@arb.ca.gov (916) 322-8957
- In-Station Diagnostics Joe Guerrero
 - -jguerrer@arb.ca.gov (916) 324-9487
- EVR Certification Laura McKinney
 - -Imckinne@arb.ca.gov (916) 327-0900
 - www.arb.ca.gov/vapor/vapor.htm